NP problems

Hamiltonian Cycle/Circuit is NP

* Non Determinism:
Input is Graph G(V,E).
Select the vertices from set “V”.
Total number of selections = n+1
If the selected vertex is already present in the set, then again re-start
the selection. (Once unique selection set is generated, perform
verification).

 Verification:

Check if there exist edge between each two selected vertices and
including “n” and “n+1”.

The solution generation requires O(n) time and solution verification
requires O(E) time.

The algorithm results in “YES” or “NO” depending upon the condition.
Hence HC problem is NP

Circuit SAT 1s NP

e Circuit SAT

[nputs:
Logic Gates: 0 {“‘«.
-y —
G NOT
=
00—

Qutput:

Circuit SAT

e A Boolean circuit is called as directed graph, where each node is
represented as Logic Gate [AND, OR, NOT].

e Circuit SAT problem takes input and “ask question whether
assignment of input results in output = 1.

e Such problems are also called as “satisfying assignment” problems.

* Non Determinism
First apply an arbitrary set of input x[1001] to the circuit and at each
gate generate the output.

* Verification
Check whether the final output is “1”, if not again change the input.
The verification can be performed in polynomial time.
Hence SAT problem is NP

Vertex cover problem is NP

e VVC: It is set of vertices of graph, which covers all the edges present in
the graph. All the edges of the graph are incident on the vertices
present in the VC set.

* VC problem is to find a set of size [k], containing the vertices covering
all the edges.

* Non Determinism:

e Select the vertices from the given graph. The selection process is re-started if
a vertex is selection is repeated. O(k)

e Verification

 Verify if all the edges present in the graph are incident on the selected
vertices O(ExE)

Application of VC

e Synonym tree / Ontology tree

Selated juylul 5]%_
.5- R T -nmanr == o
B ove |'||=L|||-l| BT - =
- £ 2 =S ':—_,
';ji=|n| HUILES s =S FULnE S
= ||]|‘~.'-1| lIJ = "o E 2 worious
— linatje :—_ = £ =
II|.|'~-'1|J| d'_i‘["[lgl]i E"!l:lt:j[t 1_::' L'—-.—:;_!TE"H‘__E
""" ISl Ielle—"= 5 =
Sepicurean £ == SS8=85
—= — prajified & = = S
= ecstatr = "= hopeful
=conlen - =happy
5"'.-‘.'1.1" -

The root word will have edges to all
Possible synonyms.

The tree will be complex structure if
constructed for more words.

The base idea can be useful in deriving
The key word and synonym.

The key question to be answered:

Why non-deterministic approach is
preferred or applied for solving problems
like: SAT, VC or HC ?

Why deterministic approach is not feasible?

The other set of problems discussed during class room sessions: CLIQUE, GPT, ISP

NP Completeness:

e Any problem or language “M” is classified as “NP-HARD” if
* There exist a set of language “L” already classified as “NP”.
e L={L1,L2,L3...}

e |f it is possible to perform the reduction of any one component of L to M, in
polynomial time, then “M” is declared as “NP-Hard”

e L = M [In polynomial time]

e The language “M” or problem “M” need not belong to class of “NP”
problem for getting classified as NP-Hard.

* If the problem “M” is NP, with all above conditions, then it is called as
NP-Complete problem.

Proof for NP-Completeness

* [mportant concept

e [f L1 - L2 [L1 reduces to L2 in polynomial time] and L2 = L3, then
L1->L3.

Proof: Since L; ™. L,, any instance x for L, can be converted in polynomial-
time p(n) into an instance f(x) for L», such that x € L if and only if f(x) € La,
where n is the size of x. Likewise, since Lgll}: L5, any instance y for L> can be
converted in polynomial-time g() into an instance g(y) for L;, such that y € L, if
and only if g(y) € L, where m is the size of y. Combining these two constructions,
any instance x for L; can be converted in time g(k) into an instance g(f{x)) for
L3, such that x € L, if and only if g(f(x)) € L;. where £ is the size of f(x). But,
k < p(n), since f(x) is constructed in p(n) steps. Thus, g(k) < g(p(n)). Since the
composition of two polynomials always results in another polynomial, this inequal-

ity implies that L; ™, Ls, =

NP Completeness: Proof (Three possibilities)

o Restriction: This form shows a problem L 1s NP-hard by noting that a known

NP-complete problem M 1s actually just a special case of L.

o Local replacement: This forms reduces a known NP-complete problem M
to L by dividing instances of M and L into “basic units,” and then showing
how each basic unit of M can be locally converted into a basic unit of L.

o Component design: This form reduces a known NP-complete problem M
to L by building components for an instance of L that will enforce impor-
tant structural functions for instances of M. For example, some components
might enforce a “choice™ while others enforce an “evaluation™ function.

NP Completeness: Problem Tree

NP Completeness: Example: Clique & Vertex Cover

A clique in a graph G 1s a subset C of vertices such that, for each v and w in C, with
v # w, (v,w) is an edge. That is, there is an edge between every pair of distinct
vertices in C. Problem CLIQUE takes a graph G and an integer k as input and asks
whether there is a clique in G of size at least k.

From previous discussion, it can be proved that Clique is NP.

If it is required to prove Clique is NP Complete, we have to prove:

1. Clique is NP [refer the class discussion and previous slides]

2. Clique is NP Hard

To prove Clique is NP-Hard, find a problem L, which is NP and can be reduced to Clique in polynomial time.
And

If both above claims are proved, then Clique is NP-Complete.

In the following proof, Vertex Cover problem is used for proving Clique as NP-Complete
a. Vertex Coveris NP

b. The solution of vertex cover should be reduced in polynomial time to solve Clique
c. For reduction, one of the three possibilities discussed, can be used.

Also it is important to formulate a problem between Clique and VC, and use solution of one to derive solution of other problem.

Proof: Consider G1 and G2.

®
T

_\‘ H?%Exmkxx

| 2 L
l\, wO 7

IF II'\ ; - f.a"-'/.—’x
..-' \ '\-_‘\..r \L__,.a--:}"x‘ e 4
e N X _%

Let (G,k) be the instance of Vertex Cover problem. For clique, construct a Compliment Graph, which has:
Same number of vertices
But
Compliment edges

We define integer parameter for clique as n-k where “k” is integer parameter for Vertex Cover.

If G has clique of size (n-k) if and only if its compliment graph has Vertex cover of size “k”
Further proof can be carried out using LOCAL REPLACEMENT

Some applications of NP problems

Example 13.10: Suppose we are given a graph (& representing a computer net-
work where vertices represent routers and edges represent physical connections.
Suppose turther that we wish to upgrade some of the roufers n our network with
special new, hut expensive, routers that can perform sophisticared monitoring oper-
auons for mnciden! connections, I we would like (o deternmne 1f k new roulers ure
sufiicient to monitor every connection in our network, then we have an instance of
VERTEX COVER i our hands.

and request-hundlg ability unproves.

Example 13.14: Suppose we have an Internet web server, and we are presented
with a collcetion of downlonad requests. For cach cach download request we can
fcasily determine the size of the requested file. Thus, we can abstract each web
requiest simply as an inicger—the size of the requested file. Given this ser of in-
lerers, we might be imteresied n defernnning a subset of them that exacily sums
to the bandwidth our server can accommodate in one minute. Unfortunately, this
[problem is an instance of SUBSET-SUM. Mureover, becuause it is NP-complete.
this problem will actually becomce harder to solve as onr weh server’s bandwidth

Reduction Principle

We say that a language L, defining some decision problem, is polynomial-time
reducible to a language M, if there is a function f computable in polynomial time,
that takes an input x to L, and transforms it to an input f(x) of M, such that x € L if
and only if f(x) € M. In addition, we use a shorthand notation, saying L. M to
signify that language L is polynomial-time reducible to language M.

We say that a language M. defining some decision problem, is NP-hard if every
other language L in NP is polynomial-time reducible to M. In more mathematical
notation, M is NP-hard, if, for every L € NP, L *™™. M. If a language M is NP-hard
and it is also in the class NP itself, then M is NP-complete. Thus, an NP-complete
problem is, in a very formal sense, one of the hardest problems in NP. as far as
polynomial-time computability is concerned. For, if anyone ever shows that an NP-
complete problem L is solvable in polynomial time, then that immediately implies
that every other problem in the entire class NP 1s solvable in polynomial time. For.
in this case. we could accept any other NP language M by reducing it to L and
then running the algorithm for L. In other words, if anyone finds a deterministic

polynomial-time algorithm for even one NP-complete problem, then P = NP.

