UNIT - I

PARSING

Unit: Outcomes

* To understand the basic concepts of Parser design.

* To understand difference between top down and bottom up parser.
* To understand the implementation details of LL(1) parser.

* To understand the implementation details of LR parsers.

* To understand the implementation details of LALR parsers.

 To understand the role of data-structures in parser design.

* To understand Error Handling in parsers.

* To understand role of parser and selection of parser for language
processing.

Introduction

* Parsing is a process that constructs a syntactic structure (i.e. parse
tree) from the stream of tokens.

» Context Free Grammars are used to describe syntactic structure of a
language.

Stream of tokens

Parser Parse tree

Context-free grammar

Type of Parsers

* Majorly Two types:
* Top Down Parser
* Bottom Up Parser

* Other types:
* Operator Precedence Parser
* Recursive Descent Parser

Top—Down Parsing Bottom—-Up Parsing

* A parse tree is created from « A parse tree is created from
root to leaves leaves to root
* The traversal of parse trees is * The traversal of parse trees is
a preorder traversal a reversal of post-order
- Tracing leftmost derivation traversal
« Two types: * Tracing rightmost derivation
« Backtracking parser * More powerful than top-down

* Predictive parser parsing

Parse Trees and Derivations

=
~— E=E+E
I|E/+| /F\E ~id+E
=

id * =id+E*E
ié h =~id+id*E

Top-down parsing =id+id * id
= =

E/l\E E:>EE+EE7'<E
+ +

| E//[\\E = E+E *id

d
" . > E+id *id

Bottom-up parsing =id +id *id

Top Down Parsing

* Implementation Requirements:

* The Grammar should not have left recursion and left factoring.

* The backtracking process helps in determining proper production
rule for string generation, if required.

* For example:
* S2aAb
« A>c|d

* String: “acd”, then since there are two option/replacements for non-terminal
symbol “"A”, backtracking may be useful.

Parser: LL(1) Parsing

e LL(2)
* Read input from (L) left to right
* Simulate (L) leftmost derivation
* 1lookahead symbol

* Use stack to simulate leftmost derivation

* Part of sentential form produced in the leftmost derivation is stored in the
stack.

* Top of stack is the leftmost nonterminal symbol in the fragment of sentential
form.

Concept of LL(2) Parsing

 Simulate leftmost derivation of the input.
» Keep part of sentential form in the stack.

* If the symbol on the top of stack is a terminal, try to match it with the
next input token and pop it out of stack.

* If the symbol on the top of stack is a nonterminal X, replace it withY
if we have a productionrule X —Y.
* Which production will be chosen, if there are both X ->Yand X —>Z?

* To be computed for all non-terminals of LHS of production rule.

* Rules:
* A 2> XYZ, then compute First(A) = First(XYZ)=FIRST(X)
* If FIRST(X) contains terminal symbol in include in FIRST(A)

* If FIRST(X) contains “€” then FIRST(A) = FIRST(X) — {€} U FIRST(YZ)
* Now compute FIRST(YZ) = FIRST(Y)
* If FIRST(Y) contains “€”, then FIRST(YZ) = FIRST(Y) — {€} U FIRST(Z)

 Continue process, till there exist NON-TERMINAL symbol in
production rule. [Otherwise “€” will remain in FIRST SET]

Follow Set

* To be computer for all non-terminals of RHS of production rule.

* While computing FOLLOW information, FIRST information about
the NON-TERMINALS of production rules is used.

» Default rule: Follow(S) = {$}

* Rules:

* A =2 oXp, then compute Follow(X) = First(B), if first of “B” contains
"e"” then continue FIRST Rule if possible.

* After completely operating FIRST Rule, if FOLLOW(X) contains “¢”
then FOLLOW(X) = FOLLOW(B) — {e} U FOLLOW(A)

Construction of LL(1) parsing table

* Structure: Non-Terminals on ROW and Terminals on Columns along
with “$” symbol.

* Find First and Follow.

\\ P/

* If A= ais production rule in grammar and symbol “a” is present in

First(a) thenadd A =2 ainT[A,3a]

* If First(a) contains “¢” then add A = a in table T[A,b], where symbol
“b"” is presentin Follow(A)

Example

s>asph §°7°°0" NS
B>Bb|c - ecb o (o S->aBDh [First = a]
D> EF o
E 9 g | e D % EF m Since it contal)ns ‘{‘?-:’“ f:\i:l
F> f =gl
| € > f ey [
F>fle NI

__-_--_

S—>aBDh

B—>cB’

Example
S >ACB | CbB | Ba NT First Follow
A dg|BC il g R nRE
A d h,ge {g, h, $}
B>gCle B o e
C 9 ha | € C {h, €} {gahaaab9$}

No left Recursion

S =2 aABb
A-2>cle
B>d|e

No left Recursion

Follow

