

Unit: Outcomes
• To understand the basic concepts of Parser design.

• To understand difference between top down and bottom up parser.

• To understand the implementation details of LL(1) parser.

• To understand the implementation details of LR parsers.

• To understand the implementation details of LALR parsers.

• To understand the role of data-structures in parser design.

• To understand Error Handling in parsers.

• To understand role of parser and selection of parser for language
processing.

Stream of tokens

Context-free grammar
Parser Parse tree

5

Top–Down Parsing Bottom–Up Parsing

Backtracking: Try different

structures and backtrack if it
does not matched the input

Predictive: Guess the
structure of the parse
tree from the next input

6

Parse Trees and Derivations

E ⇒⇒⇒⇒ E + E
⇒⇒⇒⇒ id + E
⇒⇒⇒⇒ id + E * E
⇒⇒⇒⇒ id + id * E
⇒⇒⇒⇒ id + id * id

E ⇒⇒⇒⇒ E + E
⇒⇒⇒⇒ E + E * E
⇒⇒⇒⇒ E + E * id
⇒⇒⇒⇒ E + id * id
⇒⇒⇒⇒ id + id * id

Top-down parsing

Bottom-up parsing

id

E
*

E

id

id

+

E

E E

E

E

E

E +

*

idid

id

E

Top Down Parsing
• Implementation Requirements:

• The Grammar should not have left recursion and left factoring.

• The backtracking process helps in determining proper production
rule for string generation, if required.

• For example:
• S � aAb

• A � c | d

• String: “acd”, then since there are two option/replacements for non-terminal
symbol “A”, backtracking may be useful.

8

Parser: LL(1) Parsing

• LL(1)
• Read input from (L) left to right

• Simulate (L) leftmost derivation

• 1 lookahead symbol

• Use stack to simulate leftmost derivation
• Part of sentential form produced in the leftmost derivation is stored in the

stack.

• Top of stack is the leftmost nonterminal symbol in the fragment of sentential
form.

9

Concept of LL(1) Parsing
• Simulate leftmost derivation of the input.

• Keep part of sentential form in the stack.

• If the symbol on the top of stack is a terminal, try to match it with the
next input token and pop it out of stack.

• If the symbol on the top of stack is a nonterminal X, replace it with Y
if we have a production rule X →Y.

• Which production will be chosen, if there are both X →Y and X → Z ?

First Set
• To be computed for all non-terminals of LHS of production rule.

• Rules:

• A �XYZ, then compute First(A) = First(XYZ)=FIRST(X)

• If FIRST(X) contains terminal symbol in include in FIRST(A)

• If FIRST(X) contains “ε” then FIRST(A) = FIRST(X) – {ε} U FIRST(YZ)

• Now compute FIRST(YZ) = FIRST(Y)

• If FIRST(Y) contains “ε”, then FIRST(YZ) = FIRST(Y) – {ε} U FIRST(Z)

• Continue process, till there exist NON-TERMINAL symbol in
production rule. [Otherwise “ε” will remain in FIRST SET]

Follow Set
• To be computer for all non-terminals of RHS of production rule.

• While computing FOLLOW information, FIRST information about
the NON-TERMINALS of production rules is used.

• Default rule: Follow(S) = {$}

• Rules:

• A � αXβ, then compute Follow(X) = First(β), if first of “β” contains
“ε” then continue FIRST Rule if possible.

• After completely operating FIRST Rule, if FOLLOW(X) contains “ε”
then FOLLOW(X) = FOLLOW(β) – {ε} U FOLLOW(A)

Construction of LL(1) parsing table
• Structure: Non-Terminals on ROW and Terminals on Columns along

with “$” symbol.

• Find First and Follow.

• If A � α is production rule in grammar and symbol “a” is present in
First(α) then add A � a in T[A,a]

• If First(α) contains “ε” then add A � α in table T[A,b], where symbol
“b” is present in Follow(A)

Example

S � a B D h

B � B b | c

D � E F

E � g | ε

F � f | ε

S � a B D h

B � c B’

B’ � b B’ | ε

D � E F

E � g | ε

F � f | ε

NT First Follow

S {a} {$}

B {c} {g, f, h}

B’ {b, ε } {g, f, h}

D {g, f, ε } {h}

E {g, ε } {f, h}

F {f, ε } {h}

NT/T a b c g f h $

S S�aBDh

B B�cB’

B’ B’�bB’ B’�ε B’�ε B’�ε

D D � EF D � EF D�EF

E E�g E�ε E�ε

F F�f F�ε

S����aBDh [First = a]
D ���� EF

Find FIRST(EF) = {g, f, εεεε }

Since it contains “εεεε “ find
Follow(D) = {h}

Example

S �ACB | CbB | Ba

A� dg | BC

B � gC | ε

C � ha | ε

No left Recursion

NT First Follow

S {a, b, d, h, g, ε} {$}

A d, h, g, ε {g, h, $}

B {g,c } {a,g,,h,$}

C {h, ε } {g,h,a,b,$}

NT/T a b D g h $

S

A

B

C

Example

S � aABb

A � c | ε

B � d | ε

No left Recursion

NT First Follow

S

A

B

NT/T a b C D $

S

A

B

C

