All pair shortest path & Single Source Shortest Path

Solutions for unsolved problems will be checked on 9th Feb 2015

All pair shortest path algorithm: (Flyodd-Warshall)

- Principle: To find shortest path from ONE source to ALL possible destinations in the GRAPH.
- The path can be DIRECT PATH or INDIRECT PATH
- Method:
- Initially the direct path matrix is generated.
- First vertex is used as intermediate and paths are generated, if existing path is greater then it is replaced by new path.
- The process is continued for all the vertices as intermediate vertices present in the graph.

Example of APSP

		а	b	С	d
W =	а	Γo	~	3	∞]
	b	2	0	~	~
	с	~	7	0	1
	d	6	~	~	0

Lengths of the shortest paths with intermediate vertices numbered not higher than 1, i.e. just a(note two new shortest paths from b to c and from d to c).

		а	b	С	d _
D ⁽²⁾ =	a	0		3	
	ь	2	0	5	~~
	c	9	7	0	1
	d	6	~	9	0
	L	-			

Lengths of the shortest paths with intermediate vertices numbered not higher than 2, i.e. a and b (note a new shortest path from c to a).

Example: Cont..

Lengths of the shortest paths with intermediate vertices numbered not higher than 3, i.e. a, *b*, and *c* (note four new shortest paths from *a* to *b*, from a to *d*, from *b* to *d*, and from *d* to *b*).

Lengths of the shortest paths with intermediate vertices numbered not higher than 4, i.e. a, *b*, *c*, and *d* (note a new shortest path from *c* to *a*).

Algorithm: APSP

Algorithm: All pair shortest path Algorithm Assumptions

- 1) The graph is represented using cost matrix of size nxn
- 2) The algorithm will generate output matrix in the form of matrix A of size nxn

```
Algorithm allpaths(G,cost,n: A)
{
Step-1: Direct Path Matrix
for i = 1 to n do
for j = 1 to n do
A[i, j] = cost[i, j];
Step - 2: Using intermediate vertices one by one
for k = 1 to n do
for i = 1 to n do
for j = 1 to n do
A[i, j] = min(A[i,j], A[i,k] + A[k,j])
}//end of algorithm
```

Example 2: All pair shortest path

Single Source Shortest Path: Bellman Ford

- Algorithm permits **NEGATIVE** edges in the graph.
- Generally Graph has no cycles
- Objective: To find shortest path from one source to all possible destination.
- Path can be either **DIRECT** or **INDIRECT**
- For a graph of "n" vertices: the length of shortest path can be in the range of "1 to n-1".
- The algorithm generates distance matrix by increasing the length value by 1, in each iteration.
- The results of previous iteration are used in computation for next iteration.

Example: Graph

Formulation for Shortest Path

- $dist^{k}[u] = \min\left\{dist^{k-1}[u], \min\{dist^{k-1}[i] + cost[i, u]\}\right\}$
- "u" is destination vertex
- "i" represents all possible intermediate vertices except "u"
- The vertex "i" should have connection to "u"

Execution

K	1	2	3	4	5	6	7
1	0	6	5	5	00	00	00
2	0	3	3	5	5	4	00
3	0	1	3	5	2	4	7
4	0	1	3	5	0	4	5
5	0	1	3	5	0	4	3
6	0	1	3	5	0	4	3

Algorithm: Same as Greedy

```
Algorithm:

Algorithm Bellman Ford Algo(v, cost, dist, n)

{

Step 1

For i= 1 to n do

Dist[i] = cost[v,i]

Parent[i]=v

If (i==v) then

Parent[i]= v

Else

If cost[v,i] != infinity

Parent[i]=v

Step 2
```

Single source shortest path Example 2: Weighted Graph and Weight Matrix

Single source shortest path Example 3: Directed Weighted Graph and Weight Matrix

	0	1	2 3	8 4	5	
0	(0	1	∞	∞	∞	∞
1	∞	0	2	∞	9	8
2	∞	∞	0	∞	3	8
3	-2	∞	7	0	∞	8
4	-1	∞	∞	∞	0	4
5	(∞	∞	6	5	∞	0)