All pair shortest path \& Single Source Shortest Path

Solutions for unsolved problems will be checked on 9th Feb 2015

All pair shortest path algorithm: (Flyodd-Warshall)

- Principle: To find shortest path from ONE source to ALL possible destinations in the GRAPH.
- The path can be DIRECT PATH or INDIRECT PATH
- Method:
- Initially the direct path matrix is generated.
- First vertex is used as intermediate and paths are generated, if existing path is greater then it is replaced by new path.
- The process is continued for all the vertices as intermediate vertices present in the graph.

Example of APSP

$$
\left.W=\begin{array}{l}
a \\
a \\
b \\
c
\end{array} \begin{array}{cccc}
a & b & c & d \\
0 & \infty & 3 & \infty \\
2 & 0 & \infty & \infty \\
d & 7 & 0 & 1 \\
d & \infty & \infty & 0
\end{array}\right]
$$

$$
D^{(2)}=\begin{aligned}
& a \\
& b \\
& c \\
& d
\end{aligned}\left[\begin{array}{cc|c|c}
a & b & c & d \\
0 & \infty & 3 & \infty \\
2 & 0 & 5 & \infty \\
\hline 9 & 7 & 0 & 1 \\
\hline 6 & \infty & 9 & 0
\end{array}\right]
$$

Lengths of the shortest paths with intermediate vertices numbered not higher than 2 , i.e. a and b (note a new shortest path from c to a).

Example: Cont..

$D^{(3)}=$| a |
| :--- |
| b |
| c |
| c |
| d |\(\left[\begin{array}{cccc}a \& b \& c \& u

0 \& \mathbf{1 0} \& 3 \& \mathbf{4}

2 \& 0 \& 5 \& \mathbf{6}

9 \& 7 \& 0 \& 1

6 \& \mathbf{1 6} \& 9 \& 0\end{array}\right] \quad\)| Lengths of the shortest paths |
| :--- |
| with intermediate vertices numbered |
| not higher than 3, i.e. a, b, and c |
| (note four new shortest paths from a to b, |
| from a to d, from b to d, and from d to b). |

$D^{(4)}=$| a |
| :--- |
| b |
| c |
| d |\(\left[\begin{array}{cccc}a \& b \& c \& d

0 \& 10 \& 3 \& 4

2 \& 0 \& 5 \& 6

7 \& 7 \& 0 \& 1

6 \& 16 \& 9 \& 0\end{array}\right] \quad\)| Lengths of the shortest paths |
| :--- |
| with intermediate vertices numbered |
| not higher than 4, i.e. a, b, c, and d |
| (note a new shortest path from c to a). |

Algorithm: APSP

Algorithm: All pair shortest path Algorithm
 Assumptions

1) The graph is represented using cost matrix of size $n \times n$
2) The algorithm will generate output matrix in the form of matrix A of size $n x n$

Algorithm allpaths(G,cost,n: A)
\{
Step-1: Direct Path Matrix
for $\mathrm{i}=1$ to n do
for $\mathrm{j}=1$ to n do
$A[i, j]=\operatorname{cost}[i, j] ;$
Step - 2: Using intermediate vertices one by one
for $\mathrm{k}=1$ to n do
for $i=1$ to n do
for $\mathrm{j}=1$ to n do
$A[i, j]=\min (A[i, j], A[i, k]+A[k, j])$
\}//end of algorithm

Example 2: All pair shortest path

Single Source Shortest Path: Bellman Ford

- Algorithm permits NEGATIVE edges in the graph.
- Generally Graph has no cycles
- Objective: To find shortest path from one source to all possible destination.
- Path can be either DIRECT or INDIRECT
- For a graph of " n " vertices: the length of shortest path can be in the range of " 1 to $\mathrm{n}-1$ ".
- The algorithm generates distance matrix by increasing the length value by 1 , in each iteration.
- The results of previous iteration are used in computation for next iteration.

Example: Graph

Formulation for Shortest Path

- $\operatorname{dist}^{k}[\mathrm{u}]=\min \left\{\operatorname{dist}^{k-1}[u], \min \left\{\operatorname{dist}^{k-1}[i]+\operatorname{cost}[i, u]\right\}\right\}$
- "u" is destination vertex
- "i" represents all possible intermediate vertices except " u "
- The vertex "i" should have connection to "u"

Execution

\mathbf{K}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	5	6	7
1	0	6	5	5	∞	∞	∞
2	0	3	3	5	5	4	∞
3	0	1	3	5	2	4	7
4	0	1	3	5	0	4	5
5	0	1	3	5	0	4	3
6	0	1	3	5	0	4	3

Algorithm: Same as Greedy

```
Algorithm:
Algorithm Bellman Ford Algo(v, cost, dist, n)
{
    Step 1
        For i= 1 to n do
                Dist[i] = cost[v,i]
                Parent[i]=v
    If (i==v) then
            Parent[i]= v
    Else
            If cost[v,i] != infinity
            Parent[i]=v
Step 2
        For k=2 to n-1 do
            For (each vertex "u" such that u*v and "u" has at least one incoming edge) do
        // Let "i" represent the incoming edge
            For (each <i,u> in the graph) do
                    If (dist[u] > dist[i] + cost[i,u]) then
                            dist[u] = dist[i] + cost[i,u]
                                parent[u] = i
\} // End of Algorithm
```

Single source shortest path
Example 2: Weighted Graph and Weight Matrix

0
1
2
3
4 $\left(\begin{array}{ccccc}0 & 1 & 2 & 3 & 4 \\ 0 & 5 & -4 & 1 & 0 \\ 5 & 0 & 3 & 0 & 2 \\ -4 & 3 & 0 & 7 & 9 \\ 1 & 0 & 7 & 0 & 6 \\ 0 & 2 & 9 & 6 & 0\end{array}\right)$

Single source shortest path Example 3: Directed Weighted Graph and Weight Matrix

