All pair shortest path & Single Source
Shortest Path

Solutions for unsolved problems will be checked on 9" Feb 2015

All pair shortest path algorithm: (Flyodd-Warshall)

* Principle: To find shortest path from ONE source to ALL possible
destinations in the GRAPH.

* The path can be DIRECT PATH or INDIRECT PATH
* Method:
* Initially the direct path matrix is generated.

* First vertex is used as intermediate and paths are generated, if
existing path is greater then it is replaced by new path.

* The process is continued for all the vertices as intermediate vertices
present in the graph.

Example o

abcd
a0 o 3 o
bl2 0 e e
W=lw 7 0 1
d|6 = = 0

w Ol O

Lengths of the shortest paths

with intermediate vertices numbered
not higher than 1, i.e. just a

(note two new shortest paths from
btocandfromdtoc).

Blnjo 8 o

0 o;mWwn

o/-|1 8 @

[—

Lengths of the shortest paths

with intermediate vertices numbered
not higher tham 2, i.e. a and b

inote a new shortest path from ¢ to aj.

Example: Cont..

o [L [y
al o 10 3 [a]] Lengthsof the shortest paths
Bl 2 0 518 with intermediate vertices numbered
D3l = e 7 ol not higher than 3, i.e. a, b, and ¢
46 16 910 inote four new shortest paths from ato b,
| 1| from ato d, from bto d, and from d to b).
a8 b ¢ d_
al o 10 3 4 Lengths of the shortest paths
bl 2 o0 5 & with intermediate vertices numbered
Did) = 7 7 0 1 not higher than 4, i.e. a, b, ¢, and d
; 6 16 9 0 (note a new shortest path from ¢ 1o a).

Algorithm: APSP

Algorithm: All pair shortest path Algorithm
Assumptions

1) The graph is represented using cost matrix of size nxn
2) The algorithm will generate output matrix in the form of matrix A of size nxn

Algorithm allpaths(G,cost,n: A)
{
Step-1: Direct Path Matrix
fori =1tondo
forj=1tondo
Alli, j] = costli, j];
Step — 2: Using intermediate vertices one by one
fork=1tondo
fori =1tondo
forj=1tondo
Ali, j1 = min(Ali,j], Ali,k] + A[k,j])
}//end of algorithm

Example 2: All pair shortest path

Single Source Shortest Path: Bellman Ford

 Algorithm permits NEGATIVE edges in the graph.
* Generally Graph has no cycles

* Objective: To find shortest path from one source to all possible
destination.

* Path can be either DIRECT or INDIRECT

* For a graph of “n” vertices: the length of shortest path can be in the
range of “1 to n-1".

* The algorithm generates distance matrix by increasing the length
value by 1, in each iteration.

* The results of previous iteration are used in computation for next
iteration.

Example: Graph

Formulation for Shortest Path

* dist®[u] = min {distk‘l[u],min{dlstk i) + cost[i, u]}}

ll ”

is destination vertex

ll o ll ”

represents all possible intermediate vertices except “u

ll ' ll ”

* The vertex should have connection to

Execution

Algorithm: Same as Greedy

Algorithm:
Algorithm Bellman Ford Algo{v, cost, dist, n)
{
Step 1
For i=1to ndo
Dist[i] = cost[w.,i]
Parent[il=v
If [i==w) then
Parentlil=wv
Else
If cost[w,i] = infinity
Parent[i]l=v

Step 2
For k =2 to n-1 do
For (each wvertex “u” such that u=v and "u” has at least one incoming edge) do
Jf Let "i” represent the incoming edge
For (each <i,u> in the graph) do
If (dist[u] > dist[i] + cost[i,u]) then
dist[u] = dist[i] + cost[i,u]
parentfu] =i
} /f End of Algorithm

Single source shortest path
Example 2: Weighted Graph and Weight Matrix

0 1 2 3 4
0 (0 5 -410
1 {5 0 3 0 2
2 |-4 3 0 709
311 0 7 06
4 {0 2 9 60

Single source shortest path
Example 3: Directed Weighted Graph and Weight Matrix

1 2 3 4 5

8

g © 8 w v §

8
8
g N o o g

hn W N = O
|
N
8

wn § O 8

B~

