All pair shortest path & Single Source
Shortest Path

Solutions for unsolved problems will be checked on 9" Feb 2015



All pair shortest path algorithm: (Flyodd-Warshall)

* Principle: To find shortest path from ONE source to ALL possible
destinations in the GRAPH.

* The path can be DIRECT PATH or INDIRECT PATH
* Method:
* Initially the direct path matrix is generated.

* First vertex is used as intermediate and paths are generated, if
existing path is greater then it is replaced by new path.

* The process is continued for all the vertices as intermediate vertices
present in the graph.
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Example: Cont..
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Algorithm: APSP

Algorithm: All pair shortest path Algorithm
Assumptions

1) The graph is represented using cost matrix of size nxn
2) The algorithm will generate output matrix in the form of matrix A of size nxn

Algorithm allpaths(G,cost,n: A)
{
Step-1: Direct Path Matrix
fori =1tondo
forj=1tondo
Alli, j] = costli, j];
Step — 2: Using intermediate vertices one by one
fork=1tondo
fori =1tondo
forj=1tondo
Ali, j1 = min(Ali,j], Ali,k] + A[k,j])
}//end of algorithm



Example 2: All pair shortest path




Single Source Shortest Path: Bellman Ford

 Algorithm permits NEGATIVE edges in the graph.
* Generally Graph has no cycles

* Objective: To find shortest path from one source to all possible
destination.

* Path can be either DIRECT or INDIRECT

* For a graph of “n” vertices: the length of shortest path can be in the
range of “1 to n-1".

* The algorithm generates distance matrix by increasing the length
value by 1, in each iteration.

* The results of previous iteration are used in computation for next
iteration.



Example: Graph




Formulation for Shortest Path

* dist®[u] = min {distk‘l[u],min{dlstk i) + cost[i, u]}}

ll ”

is destination vertex

ll o ll ”

represents all possible intermediate vertices except “u

ll ' ll ”

* The vertex should have connection to



Execution




Algorithm: Same as Greedy

Algorithm:
Algorithm Bellman Ford Algo{v, cost, dist, n)
{
Step 1
For i=1to ndo
Dist[i] = cost[w.,i]
Parent[il=v
If [i==w) then
Parentlil=wv
Else
If cost[w,i] = infinity
Parent[i]l=v

Step 2
For k =2 to n-1 do
For (each wvertex “u” such that u=v and "u” has at least one incoming edge) do
Jf Let "i” represent the incoming edge
For (each <i,u> in the graph) do
If (dist[u] > dist[i] + cost[i,u]) then
dist[u] = dist[i] + cost[i,u]
parentfu] =i
} /f End of Algorithm



Single source shortest path
Example 2: Weighted Graph and Weight Matrix
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Single source shortest path
Example 3: Directed Weighted Graph and Weight Matrix
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